Gamma function (SymPy, mpmath, WMA)
The gamma function is one commonly used extension of the factorial function applied to complex numbers, and is defined for all complex numbers except the non-positive integers.
Gamma
[z]Gamma
[z, x]Gamma
[z, $x_0$, $x_1$]Gamma[z, $x_0$] - Gamma[z, $x_1$]
. Gamma[z]
is equivalent to (z - 1)!
:
Simplify[Gamma[z] - (z - 1)!]
Exact arguments:
Gamma[8]
Gamma[1/2]
Gamma[1, x]
Gamma[0, x]
Numeric arguments:
Gamma[123.78]
Gamma[1. + I]
Both Gamma
and Factorial
functions are continuous:
Plot[{Gamma[x], x!}, {x, 0, 4}]