Sum
[expr, {i, imin, imax}]Sum
[expr, {i, imax}]Sum[expr, {i, 1, imax}]
.Sum
[expr, {i, imin, imax, di}]Sum
[expr, {i, imin, imax}, {j, jmin, jmax}, ...]A sum that Gauss in elementary school was asked to do to kill time:
Sum[k, {k, 1, 10}]
The symbolic form he used:
Sum[k, {k, 1, n}]
A Geometric series with a finite limit:
Sum[1 / 2 ^ i, {i, 1, k}]
A Geometric series using Infinity:
Sum[1 / 2 ^ i, {i, 1, Infinity}]
Leibniz formula used in computing Pi:
Sum[1 / ((-1)^k (2k + 1)), {k, 0, Infinity}]
A table of double sums to compute squares:
Table[ Sum[i * j, {i, 0, n}, {j, 0, n}], {n, 0, 4} ]
Computing Harmonic using a sum
Sum[1 / k ^ 2, {k, 1, n}]
Other symbolic sums:
Sum[k, {k, n, 2 n}]
A sum with Complex-number iteration values
Sum[k, {k, I, I + 1}]
Sum[k, {k, Range[5]}]
Sum[f[i], {i, 1, 7}]
Verify algebraic identities:
Sum[x ^ 2, {x, 1, y}] - y * (y + 1) * (2 * y + 1) / 6
Non-integer bounds:
Sum[i, {i, 1, 2.5}]
Sum[i, {i, 1.1, 2.5}]
Sum[k, {k, I, I + 1.5}]