Integrate
[f, x]Integrate
[f, {x, a, b}]Integrate a polynomial:
Integrate[6 x ^ 2 + 3 x ^ 2 - 4 x + 10, x]
Integrate trigonometric functions:
Integrate[Sin[x] ^ 5, x]
Definite integrals:
Integrate[x ^ 2 + x, {x, 1, 3}]
Integrate[Sin[x], {x, 0, Pi/2}]
Some other integrals:
Integrate[1 / (1 - 4 x + x^2), x]
Integrate[4 Sin[x] Cos[x], x]
Integrate[-Infinity, {x, 0, Infinity}]
Integrating something ill-defined returns the expression untouched:
Integrate[1, {x, Infinity, 0}]
Here how is an example of converting integral equation to TeX:
Integrate[f[x], {x, a, b}] // TeXForm
Sometimes there is a loss of precision during integration.
You can check the precision of your result with the following sequence of commands.
Integrate[Abs[Sin[phi]], {phi, 0, 2Pi}] // N
% // Precision
Integrate[ArcSin[x / 3], x]
Integrate[f'[x], {x, a, b}]
and,
D[Integrate[f[u, x],{u, a[x], b[x]}], x]
N[Integrate[Sin[Exp[-x^2 /2 ]],{x,1,2}]]